Bin-Meferij MM, El-Kott AF. The radioprotective effects of Moringa oleifera against mobile phone electromagnetic radiation-induced infertility in rats.Int J Clin Exp Med. 2015 Aug 15;8(8):12487-97. http://1.usa.gov/1MURLR1


REVIEW  PAPERS


Ford-Glanton BS, Melendez DA. Male reproductive toxicants:
Electromagnetic radiation and heat. Reference Module in Biomedical Sciences, 2018.
Human population in today’s world lives surrounded by
radiofrequency fields (RF) and electromagnetic radiation (EM) fields,
transmitting almost all forms of electronic communication and data that humans
produce every second. Mobile devices and laptop computers are EMR-emitting
devices. The effect of mobile phone emitted radiation and heat on fertility is
the subject of recent interest and investigations. Many studies have found a
decrease in semen quality which has increased the focus on male reproductive
health. Infertility affects approximately 15% of couples of reproductive age,
and nearly half of these cases are linked to male fertility (Sharlip et al.,
2002). Different harmful environmental influences have led to changes in semen
analysis standards by reducing the lower limits of normal ranges, which were
declared by the World Health Organization (2010). The possible negative impact
of mobile phone radiation on sperm quality has been well established. While no
certain conclusions can be drawn from current evidence, a growing number of
studies indicate a decrease in male fertility associated with increased
cellular phone usage (Agarwal et al., 2011) and laptop computers using Wi-Fi
(Avendaño et al., 2012a). Here we review the current evidence regarding the
effects of electromagnetic radiation and heat in male fertility.







Yahyazadeh A, Deniz OG, Kaplan AA, Altun G, Yurt KK, Davis D. The genomic effects of cell phone exposure on the reproductive system. Environmental Research. Available online 5 June 2018.


Abstract

Humans are exposed to increasing levels of electromagnetic fields (EMF) at various frequencies as technology advances. In this context, improving understanding of the biological effects of EMF remains an important, high priority issue. Although a number of studies in this issue and elsewhere have focused on the mechanisms of the oxidative stress caused by EMF, the precise understanding of the processes involved remains to be elucidated. Due to unclear results among the studies, the issue of EMF exposure in the literature should be evaluated at the genomic level on the reproductive system. Based on this requirement, a detail review of recently published studies is necessary. The main objectives of this study are to show differences between negative and positive effect of EMF on the reproductive system of animal and human. Extensive review of literature has been made based on well known data bases like Web of Science, PubMed, MEDLINE, Google Scholar, Science Direct, Scopus. This paper reviews the current literature and is intended to contribute to a better understanding of the genotoxic effects of EMF emitted from mobile phones and wireless systems on the human reproductive system, especially on fertility. The current literature reveals that mobile phones can affect cellular functions via non-thermal effects. Although the cellular targets of global system for mobile communications (GSM)-modulated EMF are associated with the cell membrane, the subject is still controversial. Studies regarding the genotoxic effects of EMF have generally focused on DNA damage. Possible mechanisms are related to ROS formation due to oxidative stress. EMF increases ROS production by enhancing the activity of nicotinamide adenine dinucleotide (NADH) oxidase in the cell membrane. Further detailed studies are needed to elucidate DNA damage mechanisms and apoptotic pathways during oogenesis and spermatogenesis in germ cells exposed to EMF.

Conclusion

This paper reviews the current literature and is intended to contribute to a better understanding of the genotoxic effects of EMF emitted from mobile phones and wireless systems on the human reproductive system, especially on fertility. The current literature reveals that mobile phones can affect cellular functions via non-thermal effects (Diem et al., 2005; Hanci et al., 2013 ;  Odaci et al., 2016a). Although the cellular targets of GSM-modulated EMF are associated with the cell membrane, the subject is still controversial (Eberhardt et al., 2008). Studies regarding the genotoxic effects of EMF have generally focused on DNA damage (Mortelmans and Rupa, 2004; Young, 2002; Zeiger, 2004; Panagopoulos, 2012 ;  Turedi et al., 2016). Possible mechanisms are related to ROS formation due to oxidative stress (Moustafa et al., 2004; Hanukoglu et al., 2006). EMF increases ROS production by enhancing the activity of NADH oxidase in the cell membrane (Friedman et al., 2007b). In this context, EMF affected spermatozoa may have a high degree rate of infertilization. It seems that previous genomic studies do not show definitive evidence regarding EMF affected cells in the fertilization. Although we evaluated broadly the genomic effects of cell phone exposure on the reproductive system using both animal and human studies, one of the weaknesses of this work is insufficient review of human studies. This may come from limited number of EMF based human studies in the literature. Further detailed studies are needed to elucidate DNA damage mechanisms and apoptotic pathways during oogenesis and spermatogenesis in germ cells that are exposed to EMF.

https://www.sciencedirect.com/science/article/pii/S0013935118302639

Altun G, Deniz OG, Yurt KK, Davis D, Kaplan S. Effects of mobile phone exposure on metabolomics in the male and female reproductive systems. Environmental Research. Available online 5 June 2018.


Highlights

• Long-term exposure to EMF decreases sperm motility and fertilization.

• Effects of EMF emitted from mobile phones are related to protein synthesis.
• Oxidative stress based EMF exposure modulates nitric oxide level in the germ cells.
• Oxidative stress based EMF exposure inhibits antioxidant mechanisms in the germ cells.


With current advances in technology, a number of epidemiological and experimental studies have reported a broad range of adverse effects of electromagnetic fields (EMF) on human health. Multiple cellular mechanisms have been proposed as direct causes or contributors to these biological effects. EMF-induced alterations in cellular levels can activate voltage-gated calcium channels and lead to the formation of free radicals, protein misfolding and DNA damage. Because rapidly dividing germ cells go through meiosis and mitosis, they are more sensitive to EMF in contrast to other slower-growing cell types. In this review, possible mechanistic pathways of the effects of EMF exposure on fertilization, oogenesis and spermatogenesis are discussed. In addition, the present review also evaluates metabolomic effects of GSM-modulated EMFs on the male and female reproductive systems in recent human and animal studies. In this context, experimental and epidemiological studies which examine the impact of mobile phone radiation on the processes of oogenesis and spermatogenesis are examined in line with current approaches.

MORE INFO HERE  Environmental Working Groups comments to the FCC

Conclusion

EMF emitted by mobile phones has a number of well-documented adverse metabolomic effects on the male and female reproductive systems and can lead to infertility by increasing ROS production and reducing GSH and other antioxidants. The primary target of the EMF emitted by mobile phones may be the cell membrane (Pall in press, this volume). This then results in accelerated activity of membrane NADH oxidase and, consequently, greater rates of ROS formation that cannot be easily conjugated or detoxified. Although many studies have reported morphological and functional deteriorations in testis and ovary following EMF exposures, as well both structural and functional deficits in reproductive health, the underlying mechanisms have not been fully elucidated. To assist in further clarification of these processes and mechanisms, Table 1 summarizes key studies on the metabolomic effects of EMF on reproductive systems. Future studies will benefit greatly from standardized exposure protocols and evaluations of key metabolomic indicators.




Sepehrimanesh, M. & Davis, D.L. Proteomic impacts of electromagnetic fields on the male reproductive system. Comp Clin Pathol (2016). doi:10.1007/s00580-016-2342-x. Epub ahead of print: Oct 13, 2016.

The use of mobile phones and other wireless transmitting devices is increasing dramatically in developing and developed countries, as is the rate of infertility. A number of respected infertility clinics in Australia, India, USA, and Iran are reporting that those who regularly use mobile phones tend to have reduced sperm quantity and quality. Some experimental studies have found that human sperm exposed to electromagnetic fields (EMF), either simulated or from mobile phones, developed biomarkers of impaired structure and function, as well as reduced quantity. These encompass pathological, endocrine, and proteomic changes. Proteins perform a vast array of functions within living organisms, and the proteome is the entire array of proteins—the ultimate biomolecules in the pathways of DNA transcription to translation. Proteomics is the art and science of studying all proteins in cells, using different techniques. This paper reviews proteomic experimental and clinical evidence that EMF acts as a male-mediated teratogen and contributor to infertility.


Conclusions


As among the most rapidly proliferating human cells, spermatogenesis and associated activities offer an important endpoint for evaluation. More than 60 different compounds or industrial processes have been identified as increasing defects in human sperm or testicular tissue and possibly increasing the risk to offspring from male-mediated exposures. In this study, we reviewed structural and functional proteomic changes related to EMF exposure. Reported changes are categorized based on main affected tissue and also the most important adverse effects. Overall, these results demonstrate significant effects of radio frequency-modulated EMF exposure on the proteome, including both structural and functional impacts such as a decrease in the diameter and weight of the seminiferous tubules and the mean height of the germinal epithelium (Ozguner et al. 2005) and/or pathological and physiological changes in key biochemical components of the testicular tissues (Luo et al. 2013). These structural and functional changes may account for the pathological impact of EMF on the male reproductive system reported in the experimental work that we and others have conducted. While EMF is currently being used for a number of therapeutic applications (REF), the work we have reviewed here clearly indicates a range of harmful effects, especially on genital systems.

http://bit.ly/2dTj1oT






Houston B, Nixon B, King BV, De Iuliis G, Aitken RJ. The effects of radiofrequency electromagnetic radiation on sperm function. Reproduction. 2016 Sep 6. pii: REP-16-0126. 


Abstract

Mobile phone usage has become an integral part of our lives. However, the effects of the radiofrequency electromagnetic radiation (RF-EMR) emitted by these devices on biological systems and specifically the reproductive systems are currently under active debate. A fundamental hindrance to the current debate is that there is no clear mechanism of how such non-ionising radiation influences biological systems. Therefore, we explored the documented impacts of RF-EMR on the male reproductive system and considered any common observations that could provide insights on a potential mechanism. 

Among a total of 27 studies investigating the effects of RF-EMR on the male reproductive system, negative consequences of exposure were reported in 21. Within these 21 studies, 11 of the 15 that investigated sperm motility reported significant declines, 7 of 7 that measured the production of reactive oxygen species documented elevated levels and 4 of 5 studies that probed for DNA damage highlighted increased damage, due to RF-EMR exposure. Associated with this, RF-EMR treatment reduced antioxidant levels in 6 of 6 studies that studied this phenomenon, while consequences of RF-EMR were successfully ameliorated with the supplementation of antioxidants in all 3 studies that carried out these experiments. 
In light of this, we envisage a two-step mechanism whereby RF-EMR is able to induce mitochondrial dysfunction leading to elevated ROS production. 
A continued focus on research which aims to shed light on the biological effects of RF-EMR will allow us to test and assess this proposed mechanism in a variety of cell types.


http://bit.ly/2cJJ2pE


Conclusion
To date, contradictory studies
surrounding the impacts of RF-EMR on biological systems maintain controversy
over this subject. Nevertheless, research into the biological responses
stimulated by RF-EMR is particularly important given our ever-increasing use of
mobile phone technology. While clinical studies are identifying possible
detrimental effects of RF-EMR, it is imperative that mechanistic studies are
conducted that elucidate the manner in which RF-EMR perturbs biological
function, thus supplying a rational cause. A focus on the male reproductive system may experience as consequences of the personal storage of mobile
devices, the unique vulnerability of the highly specialised sperm cell, and the
future health burden that may be created if conception proceeds with defective,
DNA-damaged spermatozoa. While this subject remains a topic of active debate,
this review has considered the growing body of evidence suggesting a possible
role for RF-EMR induced damage of the male germ line. In a majority of studies,
this damage has been characterized by loss of sperm motility and viability as
well as the induction of ROS generation and DNA damage. We have therefore given
consideration to the potential mechanisms through which RF-EMR may elicit these
effects on spermatozoa, which we utilized as a sensitive model system. We
propose a mechanistic model in which RF-EMR exposure leads to defective
mitochondrial function associated with elevated levels of ROS production and
culminates in a state of oxidative stress that would account the varying
phenotypes observed in response to RF-EMR exposure. With further complementary
data, this model will provide new impetus to the field and stimulate research
that will allow us to confidently assess the reproductive hazards of mobile
phone usage.






Adams
JA, Galloway TS, Mondal D, Esteves SC, Mathews F. Effect of mobile telephones
on sperm quality: A systematic review and meta-analysis. Environment International.
70:106-112.
September 2014.


Summary 

Mobile
phones are owned by most of the adult population worldwide. Radio-frequency
radiation (RFR) from these devices could affect sperm development and function.
Around 14% of couples in high- and middle-income countries have difficulty
conceiving. Male infertility is involved approximately 40% of the time. Several countries have reported unexplained declines in semen quality.
Animal research has found that RFR can affect the
cell cycle of sperm, increase sperm cell death and produce histological changes
in the testes. Research on humans has found that prolonged mobile phone
use is associated with decreased motility, sperm concentration, morphology and
viability suggesting a likely impact on fertility.
The authors of this peer-reviewed study conducted a
systematic review of the research and a quantitative analysis to determine
whether exposure to mobile phone radiation affects human sperm quality.
Participants were from fertility clinics and research centers.
The study examined the sperm quality outcome measures most
frequently used to assess fertility in clinical settings: motility (the
ability to move properly through the female reproductive tract), viability (the ability to fertilize the egg), and concentration (the number of
sperm in a milliliter of ejaculate).

Ten studies were examined including 1,492 human sperm samples. Exposure to
mobile phones was found to be associated with a significant eight per cent average reduction
in sperm motility and a significant nine per cent average reduction in sperm viability. The effects on sperm concentration were more equivocal. The results
were consistent across experimental laboratory studies and correlational observational
studies.
The
authors concluded that the overall results suggest that mobile phone exposure
negatively affects sperm quality in humans. The clinical importance of these effects  in this study may be limited to subfertile men and to men at
the lower-end of the normal spectrum.

Open access paper: http://bit.ly/cellphonespermdamage.




Liu K, Li Y, Zhang G, Liu J, Cao J, Ao L, Zhang S. 
Association between mobile phone use and semen quality: a systemic review and meta-analysis. Andrology. 2014 Jul;2(4):491-501. Epub 2014 Apr 3.

MORE INFO HERE  Barrie Trower – Lecture: ‘The Truth about 5G and Wi-Fi’

Abstract

Possible hazardous health effects of radiofrequency electromagnetic radiations emitted from mobile phone on the reproductive system have raised public concern in recent years. This systemic review and meta-analysis was prepared following standard procedures of the Cochrane Collaboration and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement and checklist. Relevant studies published up to May 2013 were identified from five major international and Chinese literature databases: Medline/PubMed, EMBASE, CNKI, the VIP database and the Cochrane Central Register of Controlled Trials in the Cochrane Library. Eighteen studies with 3947 men and 186 rats were included in the systemic review, of which 12 studies (four human studies, four in vitro studies and four animal studies) with 1533 men and 97 rats were used in the meta-analyses. Systemic review showed that results of most of the human studies and in vitro laboratory studies indicated mobile phone use or radiofrequency exposure had negative effects on the various semen parameters studied. However, meta-analysis indicated that mobile phone use had no adverse effects on semen parameters in human studies. In the in vitro studies, meta-analysis indicated that radiofrequency radiation had detrimental effect on sperm motility and viability in vitro [pooled mean difference (MDs) (95% CI): -4.11 (-8.08, -0.13), -3.82 (-7.00, -0.65) for sperm motility and viability respectively]. As for animal studies, radiofrequency exposure had harmful effects on sperm concentration and motility [pooled MDs (95% CI): -8.75 (-17.37, -0.12), -17.72 (-32.79, -2.65) for sperm concentration and motility respectively]. Evidence from current studies suggests potential harmful effects of mobile phone use on semen parameters. A further multicentred and standardized study is needed to assess the risk of mobile phone use on the reproductive system.

https://www.ncbi.nlm.nih.gov/pubmed/24700791





Recent papers (Updated: 1/8/2017)

Abeer M. Hagras, Eman A. Toraih, Manal S. Fawzy. Mobile phones electromagnetic radiation and NAD+-dependent Isocitrate Dehydrogenase as a mitochondrial marker in Asthenozoospermia. Biochimie Open. Available online July 25, 2016. http://bit.ly/2b69gh9


Adams JA, Galloway TS, Mondal D, Esteves SC, Mathews F. Effect of mobile telephones on sperm quality: A systematic review and meta-analysis. Environment International70:106-112. September 2014. http://bit.ly/cellphonespermdamage


Agarwal A, Deepinder F, Sharma RK, Ranga G, Li J. Effect of cell phone usage on semen analysis in men attending infertility clinic: an observational study. Fertil Steril. 2008 Jan;89(1):124-8. http://www.ncbi.nlm.nih.gov/pubmed/17482179

Agarwal A, Desai NR, Makker K, Varghese A, Mouradi R, Sabanegh E, Sharma R. Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: an in vitro pilot study. Fertil Steril. 2009;92(4):1318-25. http://www.ncbi.nlm.nih.gov/pubmed/18804757

Agarwal A, Singh A, Hamada A, Kesari K. Cell phones and male infertility: a review of recent innovations in technology and consequences.Int Braz J Urol. 2011; 37(4):432-54. http://www.ncbi.nlm.nih.gov/pubmed/21888695

Akdag MZ, Dasdag S, Canturk F, Karabulut D, Caner Y, Adalier N. Does prolonged radiofrequency radiation emitted from Wi-Fi devices induce DNA damage in various tissues of rats? J Chem Neuroanat. 2016 Jan 8. http://1.usa.gov/1RjkMVb


Al-Bayyari N. Middle East Fertility Society Journal.  The effect of cell phone usage on semen quality and fertility among Jordanian males. Published online Apr 7, 2017. http://bit.ly/2pfcO6L


Al-Quzwini OF, Al-Taee, Al-Shaikh SF. Male fertility and its association with occupational and mobile phone towers hazards: An analytic study. Middle East Fertility Society Journal. 2016 Apr 8. http://bit.ly/1SRUWWs



Bin-Meferij MM, El-Kott AF. The radioprotective effects of Moringa oleifera against mobile phone electromagnetic radiation-induced infertility in rats.Int J Clin Exp Med. 2015 Aug 15;8(8):12487-97. eCollection 2015. http://1.usa.gov/1MURLR1

Boga A, Emre M, Sertdemir Y, Uncu İ, Binokay S, Demirhan O. Effects of GSM-like radiofrequency irradiation during the oogenesis and spermiogenesis of Xenopus laevis. Ecotoxicol Environ Saf. 2016 Mar 24;129:137-144. http://1.usa.gov/1VQh4pP

Çetkin M, Kızılkan N, Demirel C, Bozdağ Z, Erkılıç S, Erbağcı H. Quantitative changes in testicular structure and function in rat exposed to mobile phone radiation. Andrologia. 2017 Jan 26. http://bit.ly/2jIxlyh


Fatehi D, Anjomshoa M, Mohammadi M, Seify M, Rostamzadeh A. Biological effects of cell-phone radiofrequency waves exposure on fertilization in mice; an in vivo and in vitro study. Middle East Fertility Society Journal. 23 October 2017. http://bit.ly/2iUT4Yd

MORE INFO HERE  New Textbook:  Electromagnetic Fields of Wireless Communications: Biological and Health Effects 

Gao XH, Hu HR, Ma X2, Chen J, Zhang GH. [Cellphone electromagnetic radiation damages the testicular ultrastructure of male rats]. [Article in Chinese].  Zhonghua Nan Ke Xue. 2016 Jun;22(6):491-495. http://bit.ly/2ywyJig

Gohari FA, Saranjam B, Asgari M, Omidi L, Ekrami H, Moussavi-Najarkola SA. An Experimental Study of the Effects of Combined Exposure to Microwave and Heat on Gene Expression and Sperm Parameters in Mice. J Hum Reprod Sci. 2017 Apr-Jun;10(2):128-134. http://bit.ly/2EpfWVM


Houston B, Nixon B, King BV, De Iuliis G, Aitken RJ. The effects of radiofrequency electromagnetic radiation on sperm function. Reproduction. 2016 Sep 6. pii: REP-16-0126. 
http://bit.ly/2cJJ2pE

Kamali K, Atarod M, Sarhadi S, Nikbakht J, Emami M, Maghsoudi R, Salimi H, Fallahpour B, Kamali N, Momtazan A, Ameli M. Effects of electromagnetic waves emitted from 3G+wi-fi modems on human semen analysis. Urologia. 2017 Sep 14:0. 
https://www.ncbi.nlm.nih.gov/pubmed/28967061


Lewis RC, Mínguez-Alarcón L, Meeker JD, Williams PL, Mezei G, Ford JB, Hauser R; EARTH Study Team.Self-reported mobile phone use and semen parameters among men from a fertility clinic. Reprod Toxicol. 2016 Nov 9. pii: S0890-6238(16)30408-7. http://bit.ly/2fV0DuM 
(Note: Authors report conflict of interest and limited statistical power to detect effects.)

Li R, Yang WQ, Chen HQ, Zhang YH. Morinda Officinalis How improves cellphone radiation-induced abnormality of LH and LHR in male rats. Article in Chinese.  2015 Sep;21(9):824-7. http://bit.ly/1Sn6Qsy


Lin YY, Wu T, Liu JY, Gao P, Li KC, Guo QY, Yuan M, Lang HY, Zeng LH, Guo GZ. 1950 MHz radio frequency electromagnetic radiation inhibits testosterone secretion of mouse Leydig cells. Int J Environ Res Public Health. 2017 Dec 23;15(1).  http://bit.ly/2CV3VKc

Liu Q, Si T, Xu X, Liang F, Wang L, Pan S. Electromagnetic
radiation at 900 MHz induces sperm apoptosis through bcl-2, bax and caspase-3
signaling pathways in rats. Reprod Health. 2015; 12:65. http://bit.ly/2hhk9mF

Ma HR, Cao XH, Ma XL, Chen JJ, Chen JW, Yang H, Liu YX. [Protective effect of Liuweidihuang Pills against cellphone electromagnetic radiation-induced histomorphological abnormality, oxidative injury, and cell apoptosis in rat testes]. Zhonghua Nan Ke Xue. 2015 Aug;21(8):737-41. [Article in Chinese]. http://1.usa.gov/1MtbdCM 


Nakatani-Enomoto S, Okutsu M, Suzuki S et al. Effects of 1950 MHz W-CDMA-like signal on human spermatoza. Bioelectromagnetics. 11 Jun 2016. http://bit.ly/28L7nE5

Odacı E, Hancı H, Yuluğ E, Türedi S, Aliyazıcıoğlu Y, Kaya H, Çolakoğlu S.Effects of prenatal exposure to a 900 MHz electromagnetic field on 60-day-old rat testis and epididymal sperm quality. Biotech Histochem. 2015 Oct 15:1-11. http://1.usa.gov/1LB2jyE


Oyewopo AO, Olaniyi SK, Oyewopo CI, Jimoh AT. Radiofrequency electromagnetic radiation from cell phone causes defective testicular function in male Wistar rats. Andrologia. 2017 Mar 6. http://bit.ly/2lZ1rP1


Pandey N, Giri S, Das S, Upadhaya P. Radiofrequency radiation (900 MHz)-induced DNA damage and cell cycle arrest in testicular germ cells in swiss albino mice. Toxicol Ind Health. 2016 Oct 13. http://bit.ly/2e1OscT
 

Parsanezhad M, Mortazavi SMJ, Doohandeh T, Namavar Jahromi B, Mozdarani , Zarei A, Davari M, Amjadi S, Soleimani A, Haghani M. Exposure to radiofrequency radiation emitted from mobile phone jammers adversely affects the quality of human sperm. International Journal of Radiation Research. 15(1). Jan 2017. http://bit.ly/2nyVhck


Radwan, M, Jurewicz, J, Merecz-Kot, D,  Sobala, W, Radwan, P, Bochenek, M, Hanke, W. Sperm DNA damage—the effect of stress and everyday life factors. International Journal of Impotence Research. 14 April 2016. http://bit.ly/1W0igXi


Saygin M, Asci H, Ozmen O,
Cankara FN, Dincoglu D, Ilhan I. Impact of 2.45 GHz microwave radiation on the
testicular inflammatory pathway biomarkers in young rats: The role of gallic
acid. Environ Toxicol. 2015 Aug 13. doi: 10.1002/tox.22179. [Epub ahead of
print] 
http://www.ncbi.nlm.nih.gov/pubmed/26268881?dopt=Abstract



Schauer I, Mohamad Al-Ali B. Combined effects of varicocele and cell phones on semen and hormonal parameters.  Wien Klin Wochenschr. 2017 Oct 13. doi: 10.1007/s00508-017-1277-9. https://www.ncbi.nlm.nih.gov/pubmed/29030685 

Sepehrimanesh, M. & Davis, D.L. Proteomic impacts of electromagnetic fields on the male reproductive system. Comp Clin Pathol (2016). doi:10.1007/s00580-016-2342-x. http://bit.ly/2dTj1oT


Sepehrimanesh M, Kazemipour N, Saeb M, Nazifi S, Davis DL.Proteomic analysis of continuous 900-MHz radiofrequency electromagnetic field exposure in testicular tissue: a rat model of human cell phone exposure. Environ Sci Pollut Res Int. 2017 Apr 10. doi: 10.1007/s11356-017-8882-z. https://www.ncbi.nlm.nih.gov/pubmed/28397118

Sokolovic D, Djordjevic B, Kocic G, Stoimenov TJ, Stanojkovic Z, Sokolovic DM, et al. The Effects of Melatonin on Oxidative Stress Parameters and DNA Fragmentation in Testicular Tissue of Rats Exposed to Microwave Radiation. Adv Clin Exp Med. 2015 May-Jun;24(3):429-36. doi: 10.17219/acem/43888. http://1.usa.gov/1hJdzAz

Solek P, Majchrowicz L, Bloniarz D, Krotoszynska E, Koziorowski M. Pulsed or continuous electromagnetic field induce p53/p21-mediated apoptotic signaling pathway in mouse spermatogenic cells in vitro and thus may affect male fertility. Toxicology. 2017 Mar 16. pii: S0300-483X(17)30092-6. http://bit.ly/2ntlHvN


Wang D, Li B, Liu Y, Ma YF, Chen SQ, Sun HJ, Dong J, Ma XH, Zhou J, Wang XH. [Impact of mobile phone radiation on the quality and DNA methylation of human sperm in vitro]. [Article in Chinese]. Zhonghua Nan Ke Xue. 2015 Jun;21(6):515-520. http://1.usa.gov/1OTD4tG

Wessapan T, Rattanadecho P. Temperature induced in the testicular and related tissues due to electromagnetic fields exposure at 900 MHz and 1800 MHz. International Journal of Heat and Mass Transfer, 102:1130-1140. 2016. http://bit.ly/2bh0xtd



Zang Z, Ji S, Huang S, Jiang M, Fang Y. (2016) Impact of Cellphone Radiation on Sexual Behavior and Serum Concentration of Testosterone and LH in Male Mice. Occupational Diseases and Environmental Medicine, 4(3):56-62. http://bit.ly/2bgF6Y4


Zhang G, Yan H, Chen Q, Liu K, Ling X, Sun L, Zhou N, Wang Z, Zou P, Wang X, Tan L, Cui Z, Zhou Z, Liu J, Ao L, Cao J. Effects of cell phone use on semen parameters: Results from the MARHCS cohort study in Chongqing, China. Environ Int. 2016 Mar 4;91:116-121. http://1.usa.gov/1pvU2YV